

Tetrahedron Letters, Vol. 38, No. 50, pp. 8703-8706, 1997 © 1997 Published by Elsevier Science Ltd All rights reserved. Printed in Great Britain 0040-4039/97 \$17.00 + 0.00

PII: S0040-4039(97)10339-2

Efficient Access to Virtually Enantiopure α -Dialkyl-, α -Acetoxy-, and α -Acetamido esters

Christian Cavé,^{a+} Yazmina Le Porhiel-Castellon,^a Valérie Daley,^a Claude Riche, ^b Angèle Chiaroni,^b Jean d'Angelo ^{a+}

a: Unité de Chimie Organique Associée au CNRS, Centre d'Etudes Pharmaceutiques, 5, rue J.-B. Clément,92296 Châtenay-Malabry, France; b: Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

Abstract : Addition of acyclic chiral β -enamino ester (S)-1 to α -methyl-, α -acetoxy-, and α -acetamido acrylates 2 gave with good yields, and with de> 95 % the corresponding Michael adducts (S, S)-3. © 1997 Published by Elsevier Science Ltd.

In 1986, Koga *et al* have investigated the asymmetric Michael addition of cyclic β -keto esters, as their valine lithium enamides. The lithium derivative added directly to methylene malonic esters without further activation,¹ but was not reactive enough to add to methyl vinyl ketone or ethyl acrylate, unless trimethylsilyl chloride was also added.² In all cases the Michael adducts were isolated in fair to excellent yields (50-90 %), and with *ee* up to 97 %. Later on, Brunner,³ Guingant,⁴ and ourselves,⁵ have demonstrated that addition of β -enamino esters, derived from *cyclic* β -keto esters and the chiral auxiliary 1-phenylethylamine, to Michael acceptors can be achieved *under neutral conditions*, in the presence of cobalt (II) acetylacetonate,³ magnesium bromide,⁴,⁵ zinc chloride,⁴ or diethylaluminum chloride.⁴ A variety of electrophilic alkenes was used (methylene malonic esters, acrylic esters, α,β -ethylenic ketones, acrylonitrile), and the enantioselectivities were up to 95 % in optimized cases.

In this paper, we show that chiral β -enamino ester (S)-1, derived from the *acyclic* β -keto ester methyl acetoacetate and (S)-1-phenylethylamine, condenses with α -methyl-, α -acetoxy-, and α -acetamido acrylates 2 to furnish Michael adducts (S-S)-3 in 65-75 % yield and with $de \ge 95$ %. Incidentally, it should be noted that enamino ester 1 thus acts as a formal equivalent of the chiral enolate ion 4.

Fax: (33) (0)1 46 83 57 52; E-mail: jean.dangelo@cep.u-psud.fr

Addition of enamino ester (S)-1, of pure Z geometry (secured by the intramolecular hydrogen bonding H^A ...O=C), prepared from methyl acetoacetate and (S)-1-phenylethylamine (12 h in toluene at reflux, with a catalytic amount of *p*-toluenesulfonic acid, 82 % yield), to methyl methacrylate 2a required the presence of 1 eq. of zinc chloride. In contrast, additions of 1 to the more reactive Michael acceptors methyl 2-acetamidoacrylate 2c were performed under purely thermal conditions. In all cases the Michael adducts were isolated in satisfying yields, and with excellent *de* (Table 1).

(S,S)-3	R	Yield [%]	de [%]	[α]D ²⁰ (c, MeOH)
8	Ме	74	94 [a]	+355 (4.6)
b	OAc	66	≥95 [b]	+336 (5.0)
c	NHAc	67	≥95 [b]	+267 (1.4)

Table 1. Yields, diastereometric excesses and rotational values of the Michael adducts (S,S)-3.
[a] Determined on the corresponding keto ester derivative 6 by ¹H NMR spectroscopy, after adding Eu(hfc)3.
[b] Determined by ¹H and ¹³C NMR spectroscopy on the Michael adducts.

The S configuration at the newly created stereogenic center in adducts 3a and 3c was established through the following chemical correlations. Hydrolysis of 3a (10 % aqueous AcOH, 24 h at 20 °C) gave with a 70 % yield an equimolar mixture of diastereomeric keto esters 5 which, upon saponification (LiOH in MeOH), acidification, spontaneous decarboxylation, and esterification with diazomethane, furnished with a 75 % yield δ -keto ester (S)-6. The latter derivative was then converted in two steps, through the corresponding 1,3-dithiolane derivative, into (S)-(+)-methyl methyl-2-hexanoate 7, of known configuration⁶ (*i*: 1,2ethanedithiol, boron trifluoride diethyl etherate; *ii*: Raney nickel). An authentic sample of 3c was synthetized as follows. Acetylation⁷ of (S)-N-acetylglutamic acid 5-methyl ester 8⁸ (*i*: 10 eq. of LDA, THF, 0 °C; *ii*: MeCOCI, 0 °C; *iii*: acidification with 2 N HCl; *iv*: CH2N2) gave with a 32 % yield β -keto ester 9, as an equimolar mixture of diastereomers. Treatment of 9 with (S)-1-phenylethylamine (24 h in toluene at reflux) finally led with a 70 % yield to enamino ester (S,S)-3c, undistinguishable in all respects with the Michael adduct resulting from the condensation of 1 with 2c. Structure of adduct (S,S)-3b was unambiguously determined through an X-ray crystallographic analysis (Figure 1).

The remarkable remote transfer of chirality observed in the previous Michael additions can be interpreted by invoking the syn-approach of the two reactants 1 and 2, with the "endo-arrangement" of the ester part of the acrylate partner 2 (the carbomethoxy group facing the nitrogen atom of enamino ester 1, Newman projection 10), and the related six-membered "aza-ene-synthesis-like" transition state structure 11.⁹ According to such a model, the alkylation took place predominantly on the less hindered π -face of enamino ester 1 (anti to the bulky phenyl group of the chiral amine moiety, portrayed in its energetically preferred conformation minimizing the A^(1,3) allylic-type interactions). The transfer of proton H^A of the enamino ester to the α -vinylic center of acceptor 2, more or less concerted with the creation of the C-C bond, then secured the control of the asteriked stereogenic center in putative intermediates 12. Imine \rightarrow enamine tautomerization of 12 finally delivered the observed Michael adducts 3.

To conclude, the asymmetric Michael addition of acyclic chiral β -enamino esters to α -substituted acrylates described here opens a new, simple and efficient entry to virtually enantiopure α -dialkyl-, α -acetoxy-, and α -acetamido esters. Since the used chiral auxiliary 1-phenylethylamine is commercially available in both optically pure forms at a moderate price, it is possible to readily synthetize both enantiomers of such α substituted esters, and to extend thus the scope of application of these important chiral synthons.

References and Notes

- 1 Tomioka, K;. Ando, K.; Yasuda, K.; Koga, K. Tetrahedron Lett. 1986, 27, 715-716.
- 2 Tomioka, K.; Seo, W.; Ando, K.; Koga, K. Tetrahedron Lett. 1987, 28, 6637-6640.
- 3 Brunner, H.; Kraus, J.; Lautenschlager, H.-J. Monatsh. Chem. 1988, 119, 1161-1167.
- 4 a) Guingant, A.; Hammami, H. Tetrahedron: Asymmetry 1991, 2, 411-414; b) Guingant, A. ibid. 1991, 2, 415-418; c) Guingant, A.; Hammami, H. ibid. 1993, 4, 25-26.
- 5 a) Cavé, C.; Daley, V.; d'Angelo, J.; Guingant, A. Tetrahedron: Asymmetry 1995, 6, 79-82; b) Cavé, C.; Desmaële, D.; d'Angelo, J.; Riche, C.; Chiaroni, A. J. Org. Chem. 1996, 61, 4361-4368; c) Cavé, C.;

Gassama, A.; Mahuteau, J.; d'Angelo, J.; Riche, C. Tetrahedron Lett. 1997, 38, 4773-4776; d) d'Angelo, J.; Cavé, C.; Desmaële, D.; Gassama, A.; Thominiaux, C.; Riche, C. Heterocycles 1998, 47, in press.

- 6 Goering, H. L.; Chung Chyi Tseng J. Org. Chem. 1983, 48, 3986-3990.
- 7 Beausoleil, E.; L'Archevêque, B.; Bélec, L.; Aftani, M.; Lubell, W. D. J. Org. Chem. 1996, 61, 9447-9454.
- 8 Prepared through N-acetylation of commercially available (S)-glutamic acid 5-methyl ester (acetic anhydride, 12 h at 20 °C, 70 % yield).
- 9 Ambroise, L.; Desmaële, D.; Mahuteau, J.; d'Angelo, J. Tetrahedron Lett. 1994, 35, 9705-9708.

Experimental Procedures

(S,S)-(+)-3a: A solution of enamino ester 1 (5 g, 23 mmol) in diethyl ether (20 mL), and methyl methacrylate (5 mL, 46 mmol) were added to a solution of ZnCl₂ (23 mmol) in diethyl ether (23 mL). The mixture was stirred at 20 °C under nitrogen for 9 days. During this period, additional portions of methyl methacrylate (0.15 mL, 4.7 mmol) were added to this mixture each 3 days. The solvent was removed and the crude oil was purified by flash chromatography (SiO₂, ethyl acetate/hexane 1/2) to give 3a, as a colorless oil in 74 % yield; IR (neat): v = 3242, 1734, 1648, 1597 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 9.86 (d, ³J (H, H) = 7 Hz, 1H), 7.48-7.33 (m, 5H), 4.63 (dq, ³J (H, H) = 7 Hz, 7 Hz, 1H), 3.68 (s, 3H), 3.61 (s, 3H), 2.77-2.22 (m, 3H), 1.80 (s, 3H), 1.48 (d, ³J (H, H) = 7 Hz, 3H), 1.03 (d, ³J (H, H) = 7 Hz, 3H).

(S,S)-(+)-3b: A mixture of enamino ester 1 (2.2 g, 10 mmol), freshly distilled methyl 2-acetoxyacrylate (2.1 g, 14 mmol) and hydroquinone (10 mg) in THF (10 mL) was stirred at 60 °C under nitrogen for 4 days. The solvent was removed and the crude oil was purified by flash chromatography (SiO₂, ethyl acetate/hexane 20/1) to give, after recrystallization in hexane/ether 4/1, **3b**, as a solid in 66 % yield. Slow evaporation of a solution of (+)-3b in hexane/ether 4/1 gave small monocrystals, suitable for an X-ray crystallographic analysis; Mp 110 °C; IR (neat): v = 3294, 1742, 1652, 1608 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 9.92 (d, ³J (H, H) = 7 Hz, 1H), 7.33-7.19 (m, 5H), 4.99 (dd, ³J (H, H) = 9.5 Hz, 4.9 Hz, 1H), 4.65 (dq, ³J (H, H) = 7 Hz, 7 Hz, 1H, CH), 3.71 (s, 3H), 3.70 (s, 3H), 2.86 (dd, ³J (H, H) = 15.1 Hz, 4.9 Hz, 1H), 2.63 (dd, ³J (H, H) = 15.1 Hz, 9.5 Hz, 1H), 1.84 (s, 3H), 1.83 (s, 3H), 1.50 (d, ³J (H, H) = 7 Hz, 3H); Anal. Calcd for C₁₉H₂₅NO₆: C, 62.81; H, 6.89; N, 3.86. Found: C, 62.63; H, 7.08; N, 3.78.

(S,S)-(+)-3c: A mixture of enamino ester 1 (0.55 g, 2.5 mmol), methyl 2-acetamidoacrylate (0.43 g, 3.0 mmol) and hydroquinone (10 mg) in THF (5 mL) was stirred at 60 °C under nitrogen for 3 days. The solvent was removed and the crude oil was purified by flash chromatography (SiO₂, hexane/ethyl acetate 2/1) to give 3c, as an amorphous solid in 67 % yield; IR (neat): v = 3321, 1746, 1660, 1597 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 9.90 (d, ³J (H, H) = 7 Hz, 1H), 7.34-7.12 (m, 5H), 6.26 (d, ³J (H, H) = 7 Hz, 1H), 4.64 (dq, ³J (H, H) = 7 Hz, 7 Hz, 1H), 4.36 (dd, ³J (H, H) = 14.5 Hz, 7.1 Hz, 1H) 3.69 (s, 3H), 3.65 (s, 3H), 2.64 (m, 2H), 1.91 (s, 3H), 1.84 (s, 3H), 1.50 (d, ³J (H, H) = 7 Hz, 3H).

(Received in France 15 September 1997; accepted 7 October 1997)